Federazione Russa

Una risposta russa alla golden dome americana

© cc Wikimedia Commons

La stampa norvegese ha osservato nel mese di agosto una frenetica attività attorno alla base  artica russa di Rogachevo sull'isola Yuzhny dell'arcipelago di Novaya Zemlya, alla latitudine  di oltre 71 gradi nord, con movimenti di navi e di aerei, incluso un velivolo da ricognizione e  controllo aereo e aerei della Rosatom, l'agenzia russa per l'energia nucleare. Sono stati  osservati lavori e movimenti di elicotteri anche al sito di Pan'kovo (170 km più a nord),  dotato di una piattaforma di lancio per test del missile cruise a propulsione nucleare  9M730 Burevestnik (procellaria), per la NATO SSC-X-9 Skyfall. 

Queste attività, oltre a restrizioni imposte al volo e alla navigazione civili nel nord-est del  mare di Barents, suggeriscono, secondo esperti internazionali e norvegesi, che si stia  appunto preparando un nuovo test del Burevestnik, dopo 13 insuccessi. 

Ricordiamo che l'incidente dell'8 agosto 2019, che ha causato al morte di 2 militari e 5  esperti nucleari russi a seguito di un’esplosione su una piattaforma nel Mar Bianco al largo  della base della marina russa di Nyonoksa, è stato interpretato da esperti occidentali  appunto come legato al recupero del relitto di un Burevestnik finito in mare a seguito di un  test fallito (http://ilbolive.unipd.it/it/news/morte-65deg-parallelo-lincidente-russo). 

Il Burevestnik è uno dei prodigi tecnologici presentati dal presidente russo Vladimir  Putin all’Assemblea federale il 1° marzo 2018 nel messaggio sullo stato dell’unione, assieme  al veicolo sommergibile autonomo a propulsione nucleare Poseidon, ai missili ipersonici Tsirkon, Kinzhal e Avangard e l'ICBM super-pesante Sarmat. Lo sviluppo di questi sistemi  bellici nucleari, per molti aspetti assolutamente straordinari, venne motivato per la  preoccupazione della Russia che il progresso americano nel campo anti-missilistico vanifichi  la capacità di reazione russa a un attacco nucleare. Atteggiamento che il nuovo progetto  della Golden Dome di Donald Trump non può che rafforzare. 

Una tecnologia estrema 

ll Burevestnik è un missile cruise subsonico per missioni nucleari alimentato da un reattore  nucleare. I missili cruise, a differenza dei missili balistici, hanno propulsione autonoma e  seguono percorsi arbitrari, guidati da un calcolatore a bordo e/o dai satelliti di navigazione;  volando a bassa quota (qualche decina di metri) sfuggono ai radar e con la loro alta mobilità  possono evitare gli intercettori anti-missile. Ciò li rende armi ad alta penetrazione delle difese nemiche; tuttavia i cruise con motori convenzionali hanno un tempo di volo e una  gittata limitati (alcuni fino a un massimo di 3000 km), determinati dalla capienza di  combustibile a bordo. 

Il Burevestnik dovrebbe essere uno statoreattore (ram jet) con un reattore nucleare  compatto al posto della camera di combustione. La fissione nucleare mette a disposizione  molta più energia rispetto ai combustibili convenzionali, e un cruise a motore nucleare potrebbe raggiungere distanze intercontinentali, seguire rotte imprevedibili e rimanere in  volo per un periodo estremamente lungo, praticamente illimitato. 

In uno statoreattore l'aria esterna entra in una presa dinamica e viene rallentata a  velocità subsonica (solitamente sino a Mach 0,3) dalla particolare geometria dei condotti opportunamente conformati, portando a un aumento della pressione del flusso di aria  fredda. Il flusso compresso impiegato come fluido refrigerante del reattore nucleare raggiunge temperature altissime (fino a 1400-1600° C), si espande e viene espulso ad alta  velocità da un ugello opportunamente sagomato per creare la spinta necessaria. Nonostante siano più efficienti al di sopra di Mach 2, gli statoreattori possono funzionare  anche a velocità subsoniche, come appunto nel caso presente. 

Per raggiungere la velocità iniziale transonica necessaria per l'innesco del motore, il  missile deve avere, per la fase iniziale, anche un propulsore a combustione, con carburante  liquido o solido. 

La realizzazione di uno statoreattore nucleare è una vera sfida tecnologica, che molti  esperti ritengono ancora lontana da venir superata. Gli USA hanno sviluppato fra gli anni ’50  e ’60 il progetto Pluto per un tale motore da impiegare appunto in un mastodontico missile  cruise (il Supersonic Low-Altitude Missile), fortunatamente cancellato prima di ogni test. Il  prototipo di statoreattore nucleare Tory-IIC venne comunque positivamente testato su  rotaia nel 1964 per alcuni minuti, ma il progetto Pluto fu definitivamente chiuso per gli  enormi problemi tecnici ancora aperti e i rischi di contaminazione radioattiva dell'ambiente.  Tra il 1959 e il 1972 sono stati costruiti e provati negli USA venti reattori del programma  NERVA per la propulsione spaziale, utilizzanti l'idrogeno come fluido di lavoro anziché l'aria  atmosferica, ma non hanno avuto impiego pratico. 

Il reattore sviluppato per il Burevestnik è una scatola nera per quanto riguarda il  materiale open source, e nulla si sa dei suoi parametri di progettazione; tenuto conto delle  indiscrezioni sulle dimensioni e velocità del missile, dovrebbe avere una potenza di alcuni megawatt. In linea di massima, ci sono due configurazioni che possono essere  ragionevolmente prese in considerazione: “a circuito aperto”, in cui l'aria in entrata fluisce  direttamente attraverso il reattore per estrarne il calore, o “a circuito chiuso”, in cui il  reattore è isolato dal flusso d'aria da uno scambiatore di calore che trasferisce il calore del  reattore all'aria, impiegando come refrigerante metalli liquidi, come sodio o potassio. 

Entrambe le configurazioni presentano delle difficoltà. I sistemi a circuito aperto  avrebbero particelle radioattive nei gas di scarico e dovrebbero essere di grandi dimensioni per accomodare i condotti per il flusso d'aria; ciò richiederebbe una maggiore quantità di  combustibile fissile per raggiungere la massa critica, aumentando così il peso del sistema.  

I sistemi a circuito chiuso avrebbero un reattore di massa inferiore, ma si deve aggiungere lo scambiatore di calore. La maggiore complessità derivante dall'introduzione di uno scambiatore di calore renderebbe un concetto a ciclo aperto più interessante per una  più rapida implementazione, considerata anche la pressione politica per il completamento  delle nuove armi presentate da Putin ancora nel 2018.  

Complessità da gestire in volo 

I reattori sono macchine estremamente sensibili e occorre controllarne continuamente con  precisione la geometria, i fluidi con cui vengono a contatto e la temperatura.  Il combustibile fissile del reattore deve mantere con precisione la sua disposizione per  raggiungere un flusso neutronico ottimale nel nocciolo. Per un missile da crociera che opera  a un'altitudine di 50-100 m e segue il terreno ad alta velocità, saranno in gioco molte forze  inerziali. Gli elementi strutturali del reattore (combustibile, moderatore, refrigerante) devono essere progettati per gestire ogni perturbazione, senza modificare in modo  significativo il flusso di neutroni nel reattore, oppure prevedere meccanismi per far tornare  il reattore naturalmente alla criticità dopo situazioni anormali. Se la geometria del  combustibile cambia, la reattività potrebbe aumentare fuori controllo, ovvero diminuire fino  a non sostenere il moto del missile.

A quote di decine di metri, nella presa d'aria dello statoreattore potrebbe entrare anche  polvere, foglie, neve, pioggia, grandine e forse anche uccelli. Bastano i cambiamenti di  umidità, temperatura e pressione a modificare la reattività del reattore, variabili che  inevitabilmente fluttueranno durante un viaggio di giorni attraverso migliaia di km di oceano  e terraferma. In condizioni di maggiore umidità, l'acqua nei condotti del reattore potrebbe  aumentare il numero di eventi di fissione, innalzando la temperatura e richiedendo un  controllo preciso per evitare la criticità. 

Le alte temperature indicate per l'aria in uscita del Burevestnik richiedono che la  maggior parte degli elementi strutturali siano in ceramica, e quindi fragili e soggetti a  fratture rapide e imprevedibili. L'enorme gradiente termico (e quindi lo stress) all'interno  del reattore, nonché il carico dinamico causato dal vento, dalle manovre e dalla turbolenza,  producono un forte degrado dei materiali, che potrebbe portare a situazioni critiche per il  missile. 

In un sistema a circuito aperto, l'aria che fluisce attraverso il nocciolo del reattore  raccoglierà i prodotti di fissione radioattivi gassosi prima di essere espulsa come scarico. La  principale preoccupazione radiologica deriva dal degrado dei materiali del reattore a causa del calore, della pressione e delle intense radiazioni durante il funzionamento. Man mano  che questi materiali radioattivi si degradano, possono scheggiarsi e uscire attraverso lo  scarico.  

Il Burevestnik potrebbe dover gestire autonomamente tutti questi problemi. In volo contro un bersaglio, non invierà telemetria a un operatore remoto che possa impartire  comandi, dato che il suo vantaggio critico è proprio la furtività. Una volta localizzato dalle  forze avversarie, la limitata velocità e il profilo di volo a bassa quota lo renderebbero un facile bersaglio per la caccia nemica. 

Ciò comporta che tutti i sistemi di controllo del reattore devono essere autonomi per  una parte, se non per tutta la durata del volo – e devono funzionare perfettamente pur in  condizioni di intensa radiazione. 

L’integrazione di uno statoreattore nucleare a ciclo aperto all’interno di un missile da  crociera, unitamente all’implementazione di sistemi di controllo caratterizzati da elevata  affidabilità e di sottosistemi ausiliari idonei a garantire la sostenibilità operativa per missioni  della durata di più giorni, configura una problematica ingegneristica di straordinaria  complessità. Alla luce di tali criticità, una parte consistente della comunità scientifica  considera la piena concretizzazione di un simile programma tecnologico, allo stato attuale,  un obiettivo di fattibilità ancora remota. 

Il programma appare orientato principalmente a un’attività di 'signalling' nei confronti  degli Stati Uniti, sottolineando come gli elementi centrali della postura russa siano la sorpresa strategica e la capacità di eludere i sistemi di allerta precoce, vanificando anche la  vantata impenetrabilità della Golden Dome. Parallelamente, esso sembra volto a  riaffermare sul piano internazionale l’immagine della Russia quale potenza tecnologica in  grado di sviluppare e dispiegare capacità non replicabili da altri attori.  

Abbiamo quindi un ulteriore confronto delle due superpotenze giocato sullo sviluppo di  tecnologie estreme, nessuna delle quali in grado di migliorare la sicurezza umana globale  delle relative popolazioni, ma che aggravano la durezza dello scontro e il rischio di escalation  militare. 

Parole chiave

Federazione Russa guerra non-proliferazione sicurezza nucleare